Root Cause Analysis
This category investigates the underlying causes of performance issues, helping teams make data-driven decisions by identifying what drives trends and anomalies.
Hint: Drill down is often preceded by anomaly detection. Once an anomaly or outlier has been detected a drill down analysis can be used to determine root cause.
Drill-Down Investigation
Digging into specific causes behind patterns or performance issues.
Purpose: Lumi AI allows users to dig deeper into specific causes behind patterns using historical chats. Users first identify performance issues, or operational inefficiencies and then analyze individual data points.
Use Case: A supply chain analyst can examine declining in quantity purchases, breaking down the issue by warehouse, region, or supplier to discover the root causes of stock discrepancies. By leveraging historical data and past inquiries, teams can explore recurring operational challenges and drive continuous improvements.
Typical Prompts:
Isolate Issues: "Identify the top 5 suppliers with the highest number of late deliveries over the past 6 months. Include relevant details like average delay time and regions affected." Follow-up : "What is the number of late deliveries for XYZ supplier over the last 12 months?."
Isolate Issues: "Identify the products with the highest rate of out of stocks in Q2 2023. Include details such as warehouse locations and supplier names."
Follow-up: "Show me the historical out of stocks rates for these ABC product over the past 12 months, broken down by warehouse."
Isolate Issue: What items have experienced the largest decline in gross profit when comparing the past 3 months to the previous 3 months.
Follow Up: For item LR-E0059, what is the gross profit for every month in the last 12 months along with the moving average?
Isolate Issue: Can you show me total sales revenues for every day in May?
Follow Up: Investigate the reasons behind the negative revenues on May 10 and May 24.
Last updated